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This paper gives new admissible values for the constant in Markov inequality in
the p-metric. We improve a classical theorem of Hille, Szegd, and Tamarkin. For
p =2, sharp numerical values are obtained. ¢ 1990 Academic Press. Inc.

1. INTRODUCTION

Let H, be the space of algebraic polynomials of degree at most #, and
|-}, the usual p-norm on [—1, 1].

It is well known (see, for example, [4, p. 141]) that, for any Pe H,,, the
Markov inequality

1P <n? Pl (1)

holds and is optimal since we have equality for the Tchebicheff polyno-
mials.

Inequality (1) has been extended to the p-norm (p > 1) by Hille, Szego,
and Tamarkin [3]. Their result reads

1P, < Cln, p)n* | P, (2)

where C(n, 1)=2(1+(1/n))"*" and C(n, p)=2(p—1)"" ' (p+ (1/n))
[14+p/np—p+ 1)1 "+ (p>1). Let us note that C(n, p) is a bounded
coefficient: C(n, p)<6e'*Y (n>0 p=1). Furthermore exponent 2 is
sharp as can be seen by taking P=P*? (Jacobi’s polynomials in the
ultraspherical case).

We observe that

Cin, p)-2(1+1/(n—=1))"""<2e (n fixed, p - )
C(n, 1)—>2e (n—oc)

C(n, p) - 2ep(p—1)'tr-! (p>1fixed, n - oc).
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The purpose of this paper is to give new admissible values for C(n, p)
and some computational results for the special case p = 2.

2. THE CASE p=1

THEOREM 1. For any Pe H, (n>0) we have
LP' I < (8/m)'2 (n+3/4) | Py

This result is quite an improvement of (2) since (8/n)'*=1.5957691...
while in (2) C(n, 1) lies between 2¢ (= 5.436...) and 8.
Before proving Theorem 1 we need some lemmas.

LEMMA 1. For any 0 € 0, 1] we have 1/sin 6 < 1/0 + 0.

Proof. For any 10,%] we have I/sin<1/(6—07/6) and for 0>0,
1/(0—0%/6) < 1/0 + 0 is equivalent to 67 ¢ 10, 17.

LeMMA 2. For any xe ]0, 1] we have

[ (0rsin 0) a0 <x + &5

0

Proof. From Lemma 1 6/sin 0 <1+ &50°. Integrating both sides of this
inequality from 0O to x gives the result.

We denote by S, the set of trigonometric polynomials of order at most
n and by ||-]| ¥ the usual norm in L?(0, 27).

LemMa 3. For any Te S, we have
IT11% < V/(2m)n(n+ 1) I T F.

Proof. Let us denote by D, the nth Dirichlet kernel. D, (x)=3Y"  ¢*
For any x, |D,(x)|<n(n+1) and

T(x) = (1/(2n)) j T(0)Dlx— 1) d.

Then
alrn

TS U/Cm)at+1) | 1T

We recall the Bernstein inequality [6]: for any p>1 and any TeS,,
1Ty <n|Tly.
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PROPOSITION 1. For any Te S, (n>=3) we have
ITIF < 8/m) 2[((n+ 1)(n+2) + )"+ 1/(20n)] [ T(0) sin ] F.

Proof. Let de]0,1), A=[—-d,dlu[n—d n+d] and B=[—n/2,
3n/21\A. Taylor’s formula gives T(8)=(1/sin@)T(0)sin = (6/sin )
(T-sin) {c(8)) for some c(8) between 0 and 8 (if § =0 replace #/sin 6 by 1).
Then

d ‘
[ @< ir-sinyy |

«

1 [6/sin 0] db
o
<(l/mHn+1)n+2) || T(0)sin B} ,*'[ |0/sin 0 d6

(Lemma 3)
<(m)(n+ 1)(n+2) | T(0) sin 0] ¥ (d+ & d°)
(Lemma 2).

A similar calculation gives

J“d 1T(0) dO < (1/m)n+ 1)(n+2)(d+ &d*) | T(0) sin 0] *

nod

and
j | T(0)] d0 < (2/m)(n+ 1) (n+2)(d+ &d*) | T(0) sin 0] *. (3)

For xe B, |sin x| >sin d. A use of Lemma | yields

J [ T(0)] d6 < (1/d + &d) || T(0) sin O F. (4)
B

Estimates (3) and (4) together give
1T < [2/m)(n+ 1) n+2)(d + &d?)
+ (1/d) + Zd] | T(0) sin 0| ¥
S[(2/m)n+1)(n+2)+ H)d+ (1/d)
+ 2/m)n+ )(n+2)3d*] | T(0) sin 0| ¥ (Lemma 2).

We now choose d=[(2/n)(n+ 1)(n+2)+&] "2 Clearly for n>3 we
have d < §, and the expression between the square brackets becomes

[2L2/m)(n+ 1)(n+2)+ 5]+ (2/n)(n+ 1) (n+2)3d°]
=(8/m)"? [[(n+ 1)(n+2)+(97/106)]'?
+Q2r) "2 (n+ 1) (n+2)Ed*]
<(8/m)"? [[(n+1)(n+2)+ 371"+ 1/(20n)]
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due to the facts that 97/106 < § and
(2r) Y (n+ D(n+2)d? <(m/4) 3 (1/n) < 1/(20n).

Proof of Theorem 1. A straightforward calculation shows that if Pe H,
then |P'|l,<2|P|, (with equality for P(x)=x), and if PeH, then
|P'||, <4 |P|, (with equality for P(x)=4x"—1) so, in the following, we
assume » >3 and we can apply Proposition 1.

Let Pe H, (n>3) and T(0) = P(cos ). We have

1P <3 IT'IF<(m/2)ITIF  (Bernstein inequality)
<(/2)8/m)' 7 [(n+ n+2)+H' 7+ 1/(20n)]
x || T(0) sin 6] {by Proposition 1)
=(8/m)" [a((n+ 1) n+2)+ D'+ 551 1P,

and it is easy to check that the coefficient between the square brackets is
less than (n + 3)°.

3. THE CASE p> 1

THEOREM 2. For any Pe H, and p>1 we have

1P|, < Ca” [P,

(,:'(2[7+1)2H"' (p Dilp+ 1y 2pp+1 1p pulJZ'/}(/Hl'
plp+1) p—1 2

'3 [ ] ] 1 Lp
x[l - w:| [1 +*} .
Sn np.

Despite its complicated expression, coefficient C has some interesting
properties:

where

C — 4(1 —3/5n) (instead of 2¢ in (2)) as p — o, # being fixed,
C is less than the constant C(n, p) in (2). Examples are shown in

Table 1.
LEMMa 4. For xe[0, 1], sin x = x/(1 + x/5).

Proof. For xe]0,1], sinx>x—x*6=1/(1/x+1) since the last
inequality is equivalent to x* + 5x -6 <0.
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TABLE 1

P=2 P=3 P=4 P=5 P=10 P =1000

N=2 H=10.76 H =930 H =823 H =751 H=3592 H=403
=846 =723 C=639 =582 =454 =284

N=35 H=10.85 H=991 H=9.05 =841 H=06091 H=492
=917 =829 C=1752 C=695 =557 =357

N=20 H=1087 H=10.19 H=942 H =883 H =737 H =534
=945 C=877 =805 =749 C=608 =393

N =50 H=1087 H=1024 H =949 H =389l H =746 H=542
C=9.50 =887 C=815 C =760 C=6.18 =401

N=100 H=1087 H=10.26 H =952 H =894 H=749 H=545
=952 =890 =819 =763 =621 =403

N=200 H=1087 H=10.27 H =953 H =895 H=1751 H =547
=953 =891 =821 C=765 =623 C=4.04

Note. H=C(n, p) in (2) by Hille, Szegd, and Tamarkin; C=improved constant in
Theorem 2,

LemMMa 5. For ae 00, 1] and ne N* we have

ain a[}+ 1
in 8)” df > .
L (S ) > s

Proof. For xe [0, 1], sin x> x/(1 4+ x/5) (Lemma 5). Thus [ (sin ¢)” dt
2o/ +45)17dt = (5 /(L+yS)P* 2di=x"*"(p+ 1)1+ x/5)7 "
Taking x =a/n we get

ain (1/7 11 a/7 [
in 0) do > > - .
| 0 P+ Dn+aS) 7 (p+ Din+ Hr+!

ProrosiTiON 2 [3, p. 733, Lemma 3.1]. For any Te S, we have
[ 107 do< Co(n, pyn [ 1TO)] " 5in 0] do

0 0

with Cy(n, p)=2p(1+1/(np))"*".

PROPOSITION 3. For any Te S, we have

jj|nmwmmoumscgmm+§v‘unonmmmh
(4
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C( )wl:(zp_f_l)Zerl:,(p l),f'(/7+1)[p+ ]:”:p_ 1}2'(/1+1D
Sty p—1lL 2 |

Proof. Let TeS, and 8, be such that |T(8,)|=||T]* . Let ae J0, 1],
J=[0,—a/n, 0,+a/n]. By the Bernstein inequality, for 6 e J, |T(0)— T(8,)
<[00 IT')% <a | TI% = a|T(0,)]. Thus |T(0)] > (1 —a) | TI% .

Furthermore

where

f |T(0)]” Isin 017 d6 = (1 —a)” | T| *" J Isin 0] do

S(—ay T)* [ (sin 617 do

Yooain
and using Lemma 5

r2n il
T(0)|” |sin 0)” d0=2(1 —a)” | T| ¥ ————————
| 1o isino (1=a) TN e

For be ]0,1], It L=[~b/(n+3), bj(n+)]u [n—b/(n+ i) m+b/(n+1)]
We have {, |T(0)|” |sin 0] d0 <4 ||TI[%" [/ " sin 0 df <L2b%/(n+ })*]
| T|*” and if 6e[~n/2,3n/2]\L then |sin 8] >sin(b/(n+2))=b/(n+ %)
(Lemma 4). Then

I 170y 1sin 0] do

“0

b (p+1) 1 240 i ’
sbﬁﬁﬁzﬁ+ﬁﬁJM+w HIT(O) sin 0] 3.

In order to minimize the coefficient between the square brackets we choose
a=(p+1)/2p+1),

BN VERE]
b:zw(/wn[l’;_ij ' a(l —a)yrite+ ),
p

and this coefficient becomes

[(2p+1)2/;+|*l(17 H"(/””[/)*}*l] [)—‘I]Z"‘/”H
prp+1)” p—11l 2 '
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Proof of Theorem 2. Let Pe H, (n=1) and T(6)= P(cos #). We have

1Pn=1 [0 | P'(cos 0)|” |sin 8] dO

A2n
Co(p)n—13)” ‘J |T'(6)|” do (by Proposition 3)

0

<

=

<ICy(pynPn—3)" " TI* (by Bernstein inequality)

(1l

<Cy(n, p)Co(p)n?(n—2)" 'n 1Pl (by Proposition 2).
Then
3N
P e (1-2) i 5

Theorem 2 follows by taking the pth-root of both sides in (5).

4. THE CASE p=2

This case has been investigated many times:
In 1937 Hille, Szego, and Tamarkin [3] proved that C(n,2)—> 1/ as
n— oo and in 1943 Schmidt [5] gave the following result:

11 3)?
for n=5 Cn2)=Bn R)=—— 3(n+_) ’
mn n°—3 R

R CEE TR Y

(6)

where —6 < R< 13.

In 1944 Beliman [1] using a method based on Legendre polynomials
proved that C(n, 2) < 1/\/§. Actually refining his method we can show that
C(n, 2)<\/§(1 + 1/m)(1 +2/n)(1 + 3/n).

In 1987 Dorfler [2] proved that the exact value for C(n, 2)n” is the
square root of the largest eigenvalue of A, A, where A4, is the matrix
(J' , pi(X) pAx) dX)o<icn 1.0<;<n and (p;) is the orthonormal system of
Legendre polynomials.

Computation of C(n,2), n<66. The computation is made using
Dorfler’s method. We recall that classical Legendre polynomials (P,)
satisfy

P:,:(zn—])P",,+(271*‘3)P"73+“' and HP”H::(}’Iﬁ—%) 1'2-

The associated orthonormal polynomials (p),) thus satisfy

plrrz\/zndi_][\/znilpn 1+\/2/173p” 1+]
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whence

(A _{(2i~1)(2j1) if i+jisoddandi<;
R0 otherwise.

The calculation of C(n, 2) can be performed by hand for n < 5: we obtain
C(1,2)=3, C(2,2)=/15/4,

C(3.2)=34 V/’/l:(45 +./1605), C(4,2)=1 ,V/%( 105 +,/7245).
The calculation has been made with a computer for n<65. Results are
shown in Table II.
ProOPOSITION 4. C(n, 2) is a decreasing function of n.

To prove this, we use (6) and establish that for n=35, B(n, 13)>
B(n—1, —6). The calculation is tedious but not difficult: if we set x =n+ 3
we are led to cxamine the sign of a polynomial of degree 10 which is easily
proved to be positive for x = 3.

TABLE 11
Optimal Values of C(n. 2), n <66

" Cin 2) n C(n. 2) n C(n, 2)
1 1.732050808 23 0.3615229545 45 0.3399739271
2 0.9682458357 24 0.3596550368 46 0.3394935513
3 0.7246218726 25 0.3579416963 47 0.3390340081
4 0.6093630858 26 0.3563645313 48 0.3385939744
5 0.5436561184 27 0.3549079455 49 0.3381722299
6 0.5016567975 28 0.3535586348 50 0.3377676604
7 0.4726480478 29 0.3523051803 51 0.3373792379
8 0.4514682813 30 0.3511377267 52 0.3370060134
9 0.4353500607 31 0.3500477249 33 03366471147
10 0.4226846279 32 0.3490277199 54 0.3363017295
11 0.4124760735 33 0.3480711862 55 0.3359691140
12 0.4040761623 34 0.3471723808 56 0.3356486575
13 0.3970453687 35 0.3463262349 57 0.3353394481
14 0.3910754153 36 0.3455282550 58 0.3350411548
15 0.3859438307 37 0.3347744451 59 0.3347531293
16 0.3814861142 38 0.3440612383 60 0.3344748503
17 0.3775780537 39 0.3433854430 61 0.3342058307
18 0.3741241300 40 0.3427441899 62 0.3339456179
19 0.3710496983 41 0.3421349011 63 03336937833
20 0.3682955944 42 0.3415552445 64 0.3334499324
21 0.3658143221 43 0.3410031092 65 (.3332136888

22 0.3635673197 44 0.3404765844
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COROLLARY. For n>64, 1/n<C(n,2)<4.

Open Problem. (C(n,2) is a decreasing function of n. Is it the same for
C(n, p) p#2? If the answer were affirmative the estimate [P, <
(p+1)'7n° | P||,, should be true since for any p, C(1,p)=(p+1)'".
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